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Abstract-In calculating the temperature profile and heat transfer associated with an optically dense 
fluid it has been the practice to use Rosseland’s approximation for the radiative heat flux, since its form 
lends itself well for use in partial differential equations. However, very little is known about the form 
of the absorption coefficient which is the fluid-characteristic term in the approximation. It is revealed 
in this analysis that in the case of uniform fluid (optically dense) flow past a flat plate, the calculated 
temperature profiles and heat transfer to the wall by radiation alone are sensitive to the choice of the 

form of the absorption coefficient. 

NOMENCLATURE 

CP, specific heat ; 

f, dependent variable (7’) ; 

h, specific enthalpy ; 

k volumetric absorption coefficient ; 

6 power parameter ; 

4, radiation flux ; 

T, absolute temperature; 
u, fluid velocity ; 

U, fluid velocity parallel to wall (U); 
u, fluid velociety perpendicular to wall 

(zero) ; 
% distance along wall ; 

Y* perpendicular distance from wall. 

Greek symbols 

92 similarity variable ; 

P? fluid density ; 

6, Stefan-Boltzmann constant. 

Subscripts 

4 power parameter ; 

R, radiation; 
W, wall ; 
CQ, free stream. 

INTRODUCTION 

AN INFINITESIMAL volume in an optically thick 

or dense gas receives radiative energy by photo 
absorption only from points very close to it. 
Therefore, for such a gas, which is also molecu- 
larly dense (number of collisions is large enough 
to maintain a Maxwellian distribution of excited 
states corresponding to the local temperature) 
local thermodynamic equilibrium exists ; i.e. 
emission from this infinitesimal volume is the 
same as it would be from a black body in 
equilibrium at the same temperature. With the 
assumptions of an optically dense gas, local 
thermodynamic equilibrium, and isotropic emis- 
sion, an integration over all directions of the 
conservation of radiation energy equation yields 
the Rosseland approximation for the radiation 
flux vector [l-3]. For the one-dimensional 
heat-transfer case, the Rosseland equation be- 
comes : 

- 160T3 dT 
qR = 

3k, dy ’ 

The purpose of this paper is to determine the 
effect of the volumetric absorption coefficient 
k, on equilibrium radiative heat transfer qR 
in an optically thick fluid, where the Rosseland 

approximation for qR is used. To accomplish 
this, it is assumed that kR is proportional to the 
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assuming a constant cP the following relation is 
obtained. 
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absolute temperature to the nth power. This 
assumption is taken for mathematical con- 
venience; however, it does represent a qualita- 
tively correct trend, and does allow an investiga- 
tion of the effect of kR on qR through the use of 
n as a parameter. 

eng = (3 - n)T’2-“’ aT 
2 

( > %J 

+ *w.zz: 

$v2 

(3) 

THEORETICAL CONCEPTS where 

The flow considered herein is an inviscid 
incompressible fluid passing the edge of a flat 
plate at a constant velocity U,. The flow enters 
at a uniform temperature lb, and the plate 
temperature is held constant at T, (see Fig. 1). 

with the boundary conditions being 

FIG. 1. 

For this parallel flow, the conservation equa- 
tions (energy and momentum) are uncoupled, 
and the conservation of mass and momentum 
equations, for the steady-state case, yield the 
trivial solution, u = U, and u = 0. Now, by 
assuming that the wail radiates just as the gas 
does, and neglecting heat transfer by conduction, 
the energy equation becomes [4] 

y = 0, T = T,, 

y = co, T = T,, (4) 

x = 0, T = T,. 

where 

Equation (3) is a nonlinear second order 
partial differential equation which has no 
closed form solution. However, equations of this 
form have been thoroughly investigated by 
several authors such as Boltzmann, Crank, and 
others in determining solutions to other physical 
problems. With the given boundary conditions, 
equation (3) can be transformed into a nonlinear 
ordinary differential equation by the use of the 
Boltzmann transformation or similarity variable. 
The form of this key transformation or similarity 
variable is clearly given in the works of Crank 
1[6] and Heaslet and Alksne [S]. which are 
concerned with the time dependent diffusion 
problem. In noting these works it is readily 
determined that the similarity variable, in this 
case, is given by 

dh = c,dT. 

Using the Rosseland approximation for an 
optically thick fluid and incorporating k, = 
aT” = (k,,/T”,)T” 

where 

r, = 
16aT”, 

3~, u, cp &co’ 

- 16oT@ -‘) dT 
qR = - 3a 

- 
dy. (2) 

By substituting equation (1) into equation (2), differential equation. 

This indeed, allows equation (3) to be trans- 
formed into the following nonlinear ordinary 
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f”f’3-n) + (3 - n)f’2-“) (j-y + 2q,f = 0 

(5) 

with the following two boundary conditions 

f(0) = TW (6) 

f(a) = T,. (7) 

It is noted here that when n = 3, equation (5) 
reduces to the linear case which was solved by 
Goulard [4] wherein the normalized solution 
for the temperature distribution reduces to the 
Gauss Error Function [7] in terms of the 
similarity variable. 

NUMERICAL SOLUTIONS 

Equation (5) with the boundary conditions 
given by equations (6) and (7) has no closed form 
solution. It represents a two-point boundary 
value problem which may be solved by a series 
expansion method as in [S] or by one of several 
numerical integration techniques. Reference [8] 
displays several numerical methods of solving 
linear ordinary differential equations ; however, 
these methods as such, do not guarantee that a 
convergence process exists when nonlinearities 
are present, as they are in equation (5). Therefore, 
by authors choice, a technique of trial and error 
using the calculus of finite difference was 
adopted. Equation (5) in finite differences form, 
has been programmed in Fortran for use on the 
IBM 7044 digital computer, such that desired 
solutions (f as a tabular function of q. and n) 
were obtained. Since numbers had to be used in 
this approach, representative values of T, and 
T, were chosen as 10000°K and 500°K respec- 
tively. These numbers were chosen since air at 
extremely high temperatures [2] (associated 
with super-orbital re-entry and blast wave 
flow fields) becomes optically dense. 

INTERPRETATION OF RESULTS 

At this point it should be noted that the inde- 
pendent variable chosen (similarity variable) is 
dependent upon the value of n. The intent of this 

paper is to show the effect of n on both the 
temperature profiles near the wall and the heat 
transfer to the wall. Therefore, before any 
meaningful comparisons of the results can be 
obtained from the solutions to the differential 
equation (5). the dependence of ye. on n must be 
removed, since 9. represents a scaled distance 
from the wall and the scale varies with n. This 
dependence on n can be removed by redefining 
the independent variable as 

‘I=‘I.T;~. (8) 

Therefore the new independent variable be- 
comes 

rl = (2&x) 
(9) 

where 

r= 
160 

3~, u, cp k,,’ 

This change in the independent variable was 
performed and the solutions (temperature vs. r]) 
to equation (5) for n = 0, 1, 2, 3, 4, 5, and 6 are 
displayed in Fig. 2. 

In order to get a better understanding of these 
results, Fig. 3 is given. This figure is a replot of 
Fig. 2; it shows the temperature profiles near 
the wall, for various n’s Here q can be considered 
as a scaled distance from the wall (in the y 
direction) at some value of x, where these pro- 
files vary with l! Jx along the wall. Note that 
the larger the value of n is, the cooler the flow is 
near the wall since more heat is being trans- 
ferred to the wall. 

HEAT TRANSFER AT THE WALL 

The main purpose herein is to determine the 
effect of the absorption coefficient through the 
parameter n, on heat transfer, qR, at the wall 
(at y = 0 + r] = 0). In order to show the effect 
of the parameter n on qR, recall equation (2): 

- 16aTC3-“‘i3T 
qR = 3a -. 

8Y 
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tua numerical computations were performed with 

the independent variable. but here, the dependence 

on n has been removed and 1 is pwen as the 

5 

5 104 5 IO3 5 I06 5 IO’ 5 IOE 

Similarity variable, 7 (Ko3$1 

FIG. 2. Numerical solutions to the differential equation (5) for various values of the 
parameter n. 
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FIG. 3. Temperatire profiles for various values of n. 

In terms of the similarity variable equation (2) 
becomes 

qR dT Cc -= 
cx T(“-3) d,, 

(10) 

where 

-8a 

cx = 3k,,($X) 

Therefore at the wall : 

(11) 

Equation (11) shows the relative relationship 
between the heat transfer to the wall, and 
temperature and temperature gradient at the 
wall. 

Figure 4 displays the temperature gradient 
at q = 0 vs. the power n. This figure shows a 
considerable variation in (dT,/dn),=o with n. 
The initial slope increases very sharply as n 
decreases. 

Table 1 shows the total effect of n on qRW 
[through the use of equation (ll)]. Note, as n 
increases by a value of one, the magnitude of 
qRW/cx increases by as much as a factor of 3.28, 
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n(ND) 

FICZ. 4. Temperature gradient at wall vs. the parameter n. 

Table 1. Radiative heat transfer at the wall REFERENCES 

n ( > qRW 
CX 

0 3.500 x IO’ 4.375 x IO9 
1 I.940 x 10” 4.850 x IO9 
2 1.328 x lo-’ 6GO x 109 
: 1.071 x 10-a 1.071 x 10’0 

1‘100 x 10-a 2,200 x 10’0 
5 1.469 x 1O-4 5.875 x 10’0 
6 2.406 x lo-” 1.925 x 10’” 

for the range of n’s considered. From n = 0 to 
t? = 6, the energy transferred to the wall 
increases by a factor of forty-four, The large 
values of n yield more heat transfer to the wall 

by the process of ru~iatio~ than do the small 
values of n. This effect is to be expected since 
as n increases, the absorption coeff’cient, kR, 
decreases (T/‘&, c 1); therefore less energy is 
absorbed by the cooler portion of the flow and 
more energy is radiated to the wall. 

CONCLUSIONS 

It is seen from Figs. 3 and 4 that the tempera- 
ture profile and wall temperature gradient are 
very much dependent upon the value of the 
parameter n. Table 1 indicates that the mag~tude 
of the net energy radiated to the wall also varies 
with n; however, the choice of n is not as critical 
as the temperature gradient dependence infers. 
Therefore, in working a problem in radiation 
where the relationship k, N T” is used, the 
degree of the precision with which n is chosen 
should depend on which flow quantity is of 
interest. 
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R&mm&-Dans le calcul du pro@ de tem~ratu~ et du transport de chaleur associe 8 un fluide optique- 
ment dense, on a couramment utilisC l’approximation de Rosseland pour ie flux de chalenr par rayonnement, 
puisque sa forme la rend toute indiqu&e pour l’emploi dans da equations aux d&iv&es partielles. 
Cependant. on connalt trb peu la forme du coefficient d’absorption qui est le terme caracttsristique du 
fluide dans l’approximation. La theorie montre que dam le MS dun Ccoulement uniforme du fluide 
(optiquement dense) le long d’une plaque plane, les protils de temperature calcuRs et le transport de 
chaleur a la paroi le myonnement seul sont sensibles au choix de la forme du coefficient ~ab~~tion. 

Z~mmenfasstmg-Bei der Berechnung des Temperaturprofils und des Wllrmetiberganges in einem 
optisch dichten Medium ist es ilblich. die Roseland-~~erung fib die Strahlung zu ve~~deR da sich 
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ihre Form in die partielle Differentialgleichung ftigt. Jedoch ist sehr wenig iiber die Form des Absorptions- 
koehizienten bekannt, der in der Niiherung den fii das Medium charakteristischen Ausdruck darstellt. 
Es zeigt sich in dieser Analyse, dass im Fall einheitlicher Striimung eines (optisch dichten) Mediums 
entlang einer ebenen Platte die errechneten Temperaturprotile und der Wlrmetibergang an die Wande 

durch Strahlung allein, auf die Wahl der Form des Absorptionskoefftzienten emphndlich reagieren. 

AHHOTB~JI--IJ 06bIIqHOti npaKTMKe paWeTa paCIIpe/JeJIeHWI TeMIIepaTypbI M TenJIOO6MeHa IS 

OnTAqeCKN IIJIOTHOti Cpene IlpMMeHReTCR npn6nmKeHHe POCCeJIaHfia AJIH JIyWCTOrO nOTOK: 

Tenna, T.K. ero @lopMa yRo6Ha RJIR peruemfl ~H@#lepeHIwanbHbIx ypaBHeHHti B '43CTHbIX 

IIpOH3BOfiHbIX. OnHaKO AaHHbIX 0 KOL'@jjI4~MeHTe a6cop6I&m, BXOAR~eM B aIInpOKCHMa~MI0. 

B BIlAeWIeHa,XapaKTepH3yIO~erO H(H~KOCTb,He~OCTaTO~HO.~ pe3yJIbTaTe aHaJIM3a BbIRCHM- 

JIOCb, YTO B CJIyWe 06TeKaHMR IIJIOCKOt IIJI3CTHHbI OAHOpORHOti HCIIAKOCTbIO (OI1TB~eCliIl 

nnoTaoti)pac4eTmIe npo@am TemepaTypbI A TerIJIOO6MeHa Hanyqemebf Ha CT~HK~:~BHMC~~T 

OT Rbl6paHHOti ~OpMblKO3@I$lUI~lleHT3 a6cop6qm. 


