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Abstract—In calculating the temperature profile and heat transfer associated with an optically dense

fluid it has been the practice to use Rosseland’s approximation for the radiative heat flux, since its form

lends itself well for use in partial differential equations. However, very little is known about the form

of the absorption coefficient which is the fluid-characteristic term in the approximation. It is revealed

in this analysis that in the case of uniform fluid (optically dense) flow past a flat plate, the calculated

temperature profiles and heat transfer to the wall by radiation alone are sensitive to the choice of the
form of the absorption coefficient.

NOMENCLATURE
Cpy specific heat;
1, dependent variable (T);
h, specific enthalpy;
k, volumetric absorption coefficient ;
n, power parameter;
q, radiation flux;
T, absolute temperature;
U, fluid velocity;
u, fluid velocity parallel to wall (U);
v, fluid velociety perpendicular to wall
(zero);
X, distance along wall;
¥ perpendicular distance from wall.

Greek symbols

n, similarity variable;

0, fluid density;

o, Stefan-Boltzmann constant.
Subscripts

n, power parameter;

R, radiation ;

w, wall ;

o0, free stream.

INTRODUCTION

AN INFINITESIMAL volume in an optically thick

or dense gas receives radiative energy by photo
absorption only from points very close to it.
Therefore, for such a gas, which is also molecu-
larly dense (number of collisions is large enough
to maintain a Maxwellian distribution of excited
states corresponding to the local temperature)
local thermodynamic equilibrium exists; i.e.
emission from this infinitesimal volume is the
same as it would be from a black body in
equilibrium at the same temperature. With the
assumptions of an optically dense gas, local
thermodynamic equilibrium, and isotropic emis-
sion, an integration over all directions of the
conservation of radiation energy equation yields
the Rosseland approximation for the radiation
flux vector [1-3]. For the one-dimensional
heat-transfer case, the Rosseland equation be-
comes:

_ —166T3dT
®= 4

The purpose of this paper is to determine the
effect of the volumetric absorption coefficient
kz on equilibrium radiative heat transfer g,
in an optically thick fluid, where the Rosseland
approximation for gz is used. To accomplish
this, it is assumed that kg is proportional to the
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absolute temperature to the nth power. This
assumption is taken for mathematical con-
venience; however, it does represent a qualita-
tively correct trend, and does allow an investiga-
tion of the effect of kyx on g, through the use of
n as a parameter.

THEORETICAL CONCEPTS

The flow considered herein is an inviscid
incompressible fluid passing the edge of a flat
plate at a constant velocity U_. The flow enters
at a uniform temperature T, and the plate
temperature is held constant at Ty (see Fig. 1).

Uy =

JITTT
w

Fig. 1.

For this parallel flow, the conservation equa-
tions (energy and momentum) are uncoupled,
and the conservation of mass and momentum
equations, for the steady-state case, yield the
trivial solution, u = U, and v = 0. Now, by
assuming that the wall radiates just as the gas
does, and neglecting heat transfer by conduction,
the energy equation becomes [4]
3
bl = Gl (1
O0x ay

where
dh = ¢,dT.

Using the Rosseland approximation for an
optically thick fluid and incorporating kg =
aT" = (kp,,/T")T"

_ _—_160T(3“"’ or
R 3a oy’

By substituting equation (1) into equation {2),

(2)
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assuming a constant ¢, the following relation is
obtained.

T oT Y &a*T
= — T(Z*n) i {3 ~my ~
3y 3-n (83}) + T I
(3)
where
c. = 3pooUoonkRoo
" 60T,
with the boundary conditions being
y = 0, T = Tw,
y = o0, T=T,, (4}
x =0, T=T,.

Equation (3) is a nonlinear second order
partial differential equation which has no
closed form solution. However, equations of this
form have been thoroughly investigated by
several authors such as Boltzmann, Crank, and
others, in determining solutions to other physical
problems. With the given boundary conditions,
equation (3) can be transformed into a nonlinear
ordinary differential equation by the use of the
Boltzmann transformation or similarity variable.
The form of this key transformation or similarity
variable is clearly given in the works of Crank
[6] and Heaslet and Alksne [S5]. which are
concerned with the time dependent diffusion
problem. In noting these works it is readily
determined that the similarity variable, in this
case, is given by

=)
" (2\/F,,x)
where

_ 16aT",
" 3p, U cpk,m'

This indeed, allows equation (3) to be trans-
formed into the following nonlinear ordinary
differential equation.
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f7FOT 4 B = () + 2 =0
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with the following two boundary conditions
fO) =Ty (6)
floo) = T,. (N

It is noted here that when n = 3, equation (5)
reduces to the linear case which was solved by
Goulard [4] wherein the normalized solution
for the temperature distribution reduces to the
Gauss Error Function [7] in terms of the
similarity variable.

NUMERICAL SOLUTIONS

Equation (5) with the boundary conditions
given by equations (6) and (7) has no closed form
solution. It represents a two-point boundary
value problem which may be solved by a series
expansion method as in [5] or by one of several
numerical integration techniques. Reference [8]
displays several numerical methods of solving
linear ordinary differential equations; however,
these methods as such, do not guarantee that a
convergence process exists when nonlinearities
are present, as they are in equation (5). Therefore,
by authors choice, a technique of trial and error
using the calculus of finite difference was
adopted. Equation (5), in finite differences form,
has been programmed in Fortran for use on the
IBM 7044 digital computer, such that desired
solutions (f as a tabular function of 5, and n)
were obtained. Since numbers had to be used in
this approach, representative values of T, and
Ty were chosen as 10000°K and 500°K respec-
tively. These numbers were chosen since air at
extremely high temperatures [2] (associated
with super-orbital re-entry and blast wave
flow fields) becomes optically dense.

INTERPRETATION OF RESULTS

At this point it should be noted that the inde-
pendent variable chosen (similarity variable) is
dependent upon the value of n. The intent of this
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paper is to show the effect of n on both the
temperature profiles near the wall and the heat
transfer to the wall. Therefore, before any
meaningful comparisons of the results can be
obtained from the solutions to the differential
equation (5), the dependence of 7, on n must be
removed, since n, represents a scaled distance
from the wall and the scale varies with n. This
dependence on n can be removed by redefining
the independent variable as

n=n,T 72 (8)

Therefore the new independent variable be-
comes

oy
=2 Jrx) ©)

where

r— 160 .
3.000 Uoo cp kRoo

This change in the independent variable was
performed and the solutions (temperature vs. #)
to equation (S) forn =0, 1, 2, 3, 4. 5, and 6 are
displayed in Fig. 2.

In order to get a better understanding of these
results, Fig. 3 is given. This figure is a replot of
Fig. 2; it shows the temperature profiles near
the wall, for various n’s. Here 7 can be considered
as a scaled distance from the wall (in the y
direction) at some value of x, where these pro-
files vary with 1//x along the wall. Note that
the larger the value of n is, the cooler the flow is
near the wall since more heat is being trans-
ferred to the wall.

HEAT TRANSFER AT THE WALL

The main purpose herein is to determine the
effect of the absorption coefficient through the
parameter n, on heat transfer, g, at the wall
(at y = 0 > n = 0). In order to show the effect
of the parameter n on gy, recall equation (2):

—166T®~"3T

W=""30 oy
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7, G5 the independent variable, but here, the dependence
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Fi1G. 2. Numerical solutions to the differential equation (5) for various values of the
parameter n.

08

107

o

A
N\

/

[
R A,
N Vivel

3
Scaled distance from wall at given x, 17(K°’2)

i
Tyar) Tw)
Temperature, 7(°K)

F1G. 3. Temperatire profiles for various values of n.

In terms of the similarity variable equation (2)
becomes

where
. = —8ag
* 3kpo(y/TX)
Therefore at the wall:
qcx;xw =F%(3_’77:)n=0 (1

Equation (11) shows the relative relationship
between the heat transfer to the wall, and
temperature and temperature gradient at the
wall.

Figure 4 displays the temperature gradient
at 1 = 0 vs. the power n. This figure shows a
considerable variation in (dT/dn),-, with n.
The initial slope increases very sharply as n
decreases.

Table 1 shows the total effect of n on ggy
[through the use of equation (11)]. Note, as n
increases by a value of one, the magnitude of
qrw/c, increases by as much as a factor of 3-28,
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F1G. 4. Temperature gradient at wall vs. the parameter n.

Table 1. Radiative heat transfer at the wall

9

=

0 3500 x 10t 4375 x 10°
1 1940 x 10° 4.850 x 10°
2 1-328 x 107 6640 x 10°
3 1071 x 1072 1071 x 10'°
4 1100 x 1073 2:200 x 1010
5 1469 x 1074 5875 x 10°
6 2406 x 1075 1925 x 101

for the range of n’s considered. From n = 0 to
n=©6, the energy transferred to the wall
increases by a factor of forty-four. The large
values of n yield more heat transfer to the wall
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by the process of radiation than do the small
values of n. This effect is to be expected since
as n increases, the absorption coefficient, kg,
decreases (T/T,, < 1); therefore less energy is
absorbed by the cooler portion of the flow and
more energy is radiated to the wall.

CONCLUSIONS

It is seen from Figs. 3 and 4 that the tempera-
ture profile and wall temperature gradient are
very much dependent upon the value of the
parameter n. Table 1 indicates that the magnitude
of the net energy radiated to the wall also varies
with n; however, the choice of » is not as critical
as the temperature gradient dependence infers.
Therefore, in working a problem in radiation
where the relationship kz ~ T" is used, the
degree of the precision with which n is chosen
should depend on which flow quantity is of
interest.
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Résumé—Dans le calcul du profil de température et du transport de chaleur associé & un fluide optique-
ment dense, on a couramment utilisé 'approximation de Rosseland pour le flux de chaleur par rayonnement,
puisque sa forme la rend toute indiquée pour I'emploi dans des équations aux dérivées partielles.
Cependant, on connait trés peu la forme du coefficient d’absorption qui est le terme caractéristique du
fluide dans P'approximation. La théoric montre que dans le cas d’un écoulement uniforme du fluide
(optiquement dense) le long d’une plaque plane, les profils de température calculés et le transport de
chaleur 2 la paroi le rayonnement seul sont sensibles au choix de la forme du coefficient d’absorption.

Zusammenfassung—Bei der Berechnung des Temperaturprofils und des Wirmeiiberganges in einem
optisch dichten Medium ist es iiblich, die Rosseland-Naherung fiir die Strahlung zu verwenden, da sich
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ihre Form in die partielle Differentialgleichung fiigt. Jedoch ist sehr wenig iiber die Form des Absorptions-
koeffizienten bekannt, der in der Niherung den fiir das Medium charakteristischen Ausdruck darstelit.
Es zeigt sich in dieser Analyse, dass im Fall einheitlicher Strdmung eines (optisch dichten) Mediums
entlang einer ebenen Platte die errechneten Temperaturprofile und der Wirmeiibergang an die Winde
durch Strahlung allein, auf die Wah! der Form des Absorptionskoeffizienten empfindlich reagieren.

AnrHoTamMA—B 00bIMHON NpaKTHKe pacdeTa paclpefeseHUA TeMIepaTypsl i TenjoobmeHa
ONTHYECKH ILIOTHON Cpefe NpuMmeHsAeTcA npubiuxenue Poccesanfa [AjIA JAyuucTOro MOTOKA
Temya, T.K. ero Qopma ynobHa AnA peweHus HUQPepeHNUANLHEIX YPABHEHUH B YACTHBIX
pousBOAHEIX . OXHAKO MAHHHX 0 KoaPduumente aGCopOIMu, BXOMALIEM B ANNPOKCHMALUIO,
B BUJe WIeHA, XapaKTePU3YIOIIEro HKUAKOCTh, HEOCTATOYHO. B pesynpraTe anasiu3a BLIACHH-
JI0Ch, 4TO B CIyyae OOTeKaHMA IJIOCKOW NNACTUHEL OJHOPOTHOH KHAKOCTBIO (OTTHYECKH
INXOTHOH) pacyeTHhle NIPOQUIN TeMIepaTypHl ¥ Tenjoo0MeHa U3IyYeHUeM HA CTeHKe 3aBNCHT
ot BuGpanHoit opmMul koaddurmenrta abeopOuu.,



